
R and Data Analysis

fwang2@ornl.gov

Contents

1 Data

1.1 Vector

Vector is an ordered list of elements of same mode. Among the mode R has: 1) logical 2) character 3) numeric
4) complex 5) raw

In R, a vector is an object with order and length, but no dimensions. A matrix in R however, has dimension.
This is different from Matlab, where vector is just a special matrix. If you run dim(), nrow(), ncol() on a
vector object, NULL is returned.

x = vector() # vector of length 0
y = c("alice", "in", "wonderland")
z = paste(y[1], y[2], sep="-") # default sep is space

Now you can convert a vector into a column vector (or matrix in R) by calling as.matrix() on the vector
object.

Collect vectors into a data frame:

> Year = c(1800, 1900)
> Carbon = c(8,1630)
> fossilefuel = data.frame(year=Year, carbon=Carbon)
> fossilefuel

year carbon
1 1800 8
2 1900 1630

Subset of vectors

You can specific the indices of the elements are to be extracted, use negative script to omit the elements in
the nomiated subscript poitions:

> x = c(3, 8, 2, 5, 100, 70)
> x[c(2,4)]
[1] 8 5
> x[-c(2,4)]
[1] 3 2 100 70
> x>10
[1] FALSE FALSE FALSE FALSE TRUE TRUE

1

> x[x>10]
[1] 100 70

1.2 Data Frame

A data frame is a collection of variables which share many of the properties of matrices and lists. More
precisely, a data frame is a list of variables of the same length with unique row names. It is given class name
”data.frame”.

Noted that when you use scan() to read data file, the return object is a vector; but if you use read.table(),
then the return object is a data frame, which has dimensions.

Get Subset from Data Frame

• salary$id is one way to access a variable inside the data frame

• salary$id[1] - access first element of the vector

• alary$id[2:3] - access a subset of elements

• salary$id[c(5,7)] - access elements 5 and 7

• salary$id[salary$[salary$startyr == 95] - all people join in 95

• salary[1,] - get the first row

• salary[,2] - get the second column

• salary[3:7, 2:4] - some rows and columns

• salary[, c("id","temp")] - extract columns by name

• yes = antibiotics[antibiotics$antib == 1,] - put this subset into a new data frame

1.2.1 Slice Data Set

DDN dataset has a column named ”Operation”, with categorical value of ”read” and ”write”. Suppose I want
all rows of write operation go into a data frame, here is how to do that:

ddn = read.csv("ddnraw.csv")
ind = ddn$Operation == "write"
ddnwrite = ddn[ind,]

Obviously, you can also slice data horizontally based on some kind of row based criteria.

1.3 Matrix

Matrix: two or more vectors of the same data type and same length.

y = cbind(letters[1:4],LETTERS[1:4])

2

cbind() binds vectors as columns.

1.4 Factors

Factors represent categorical variables. You can’t do math operations on them (except for ==). An example of
such is sex column which has two values: male and female. You can table such data by table(students$sex)
and R will do frequency distribution on them.

1.5 Sequences of data

• seq() is more general than 1:5:

>seq(from=5, to=22, by=3)

• To repeat sequence (4,5) three times:

> rep(c(4,5), 3)

1.6 Selection and Matching

You can select data by providing a matching check:

> student[score > 80]

You can also use if function to test the truth:

> distance = c(148,182,173,166,109,414,166)
> dist.sort = if (distance[1] > 150)
+ sort(distance, decreasing=T) else sort(distance)
> dist.sort
[1] 109 148 166 166 173 182 414

1.7 Examine Data Type

You can use mode() to check the data type. For example:

> mode(mean)
[1] "function"
> mode(1)
[1] "numeric"
> mode(c(TRUE,FALSE))
[1] "logical"

typeof() determines the (R internal) type or storage mode for given object. For example:

> typeof(2)
[1] "double"
> mode(2)
[1] "numeric"

Setting a mode from one to anther is called coercion. is.x() and as.x() can be used to check and set the
mode. x here can be ”matrix”, ”vector”, ”list”, ”numeric”, ”logical”, ”integer” etc.

3

You can access and change an object’s attributes by attributes(). For object such as array, matrix, or data
frame, you can use dim() to get its dimension.

1.8 Read Directory

dir() can return all files under current directory. A few variations on this function: it can take both a
path name and regular expression to select what files to return. A convenient function glob2rx() converts
wildcard expression as seen in filesystem to a regular expression:

> dir(".", glob2rx("jj*.dat"))
[1] "jj.dat" "jj2.dat"

1.9 Read data

Before you read files, know what directory you start with: getwd() and setwd() show and change current
work directory respectively.

Read raw data

d = scan(file="raw.dat")

Read text Data

if data salary.txt is like this:

id gender startyr
1 F 95
2 F 93
3 M 97

You can read the data as:

salary = read.table("salary.txt", header=TRUE)

if variable name are not included, you can supply them:

salary=read.table("salary.txt", col.names=c("id","gender","startyr"))

if data set is like this:

Ozone, Solar, Wind, Tmp
41, 190, 68, 5
NA, NA, 14, 5

Then we have at least two ways to read the data:

ozone = read.table("ozone.csv", header=TRUE, sep=",")
ozone = read.csv("ozone.csv")

You can also change column names after reading the data:

> d = read.table(’A.txt’)
> names(d)
[1] "V1" "V2"

4

> names(d) = 1:length(d) --> column name 1 2
> names(d) = LETTERS[1:length(d)] --> column name A B

1.10 Read Performance

If your file only contains number, or only strings, it is wiser to store it in a matrix, not a data.frame - that is
what function scan() does.

For large files, you can assiste R to read faster by telling R the type of each columns.

the first column is numeric, the other contain strings
read.table("foo.txt", colClasses = c("numeric", rep("character", 10)))

1.11 Create Data

Sometimes, the program generates bunch of data that you want to save it for later analysis. An example of
doing this is:

100x8 empty matrix
outp = matrix(nrow=100, ncol=2)
for (i in 1:100) {

...
outp[i,] = c(data1, data2)

}
write.table(outp, file="outp.Rdata", row.names=FALSE,

col.names=c("kurt1", "kurt2"))

1.12 Write Data

There should be better ways, but here is what I know: say I want to write a matrix with specific rows and
columns on disk:

x = matrix(nrow=10,ncol=3)
x[1,] = c (1,2,3)
...
write.table(x,file="data.txt",row.names=FALSE,col.names=c("min","max","sd"))

You can also save R objects in a binary file and load it into workspace as it is:

x = runif(20)
y = list(a=1,b=TRUE,c="oops")
save(x,y,file="xy.Rdata)

2 Functions

2.1 Configuration

• options(digits=3) - ask R to print no more than 3 decimal digits.

• A simple way of trimming is to call round(num, digits=3).

5

2.2 Statistic

• names() access variable names in a data frame.

• mean(), median(), var(), and sd() is self-obvious.

• runif(5,0,2): return 5 random values from 0 to 2 with equal probability

3 Programming R

You load a program source by source(). You can also call invoke R from command line by:

Rscript some.R arg1 arg2

In R, a library is a directory, usually have one or more packages. A package is a set of functions, data sets
and manual pages, contained in a directory, or a *.tar.gz file. A bundle is a set of packages contained in the
same *.tar.gz files. The confusing part is, to load a package, your call library().

There are some steps to follow if you want your own R script to be a package, refer to http://zoonek2.

free.fr/UNIX/48_R/02.html for details.

3.1 Control Structure

Conditional

if (...) {
...

} else {
...

}

x = if (...) 3.14 else 2.71

Here is an interesting way of constructing vector from conditional expression:

x = rnorm(100)
y = ifelse(x > 0, 1, -1)
z = ifelse(x > 0, 1, ifelse(x<0, -1, 0))

Loop

for (i in 1:10) {
...
if (...) {next}

if (...) {break}
...

}
##
while (...) {

...
}
##
repeat {

...

6

if (...) { break }
...

}

3.1.1 Example

x = as.logical(as.integer(runif(5,0,2)))
coerced into logical values
y = vector();
for (i in 1:length(x)) {

if (x[i]) {y[i] = 1} else {y[i]=0}

Another example for avoiding loops:

ifelse(x, y = 1, y = 0)
this function ifelse(a,b,c) executes, element by element, b[i]
if a[i] is TRUE, c[i] if a[i] is FALSE.

3.2 Global variable

Assign an object to be globally available:

a.function = function(z) {
y <<- 2 *z
y

}

3.3 Command Line

require("moments")

argv = commandArgs(TRUE)
file = argv[1]
d = scan(file=paste(file))
d_min = min(d)
d_max = max(d)
d_norm = (d-d_min)/d_min
kurt = kurtosis(d_norm)
cat("\tKurtosis = ", kurt, "\n")

4 R Environment and Customization

• objects() - show all objects in current workspace.

• sessionInfo() - show which packages are currently attached

• data() - get a list of dataset in all packages

On Mac, the customization file at $HOME/.Rprofile. .Rdata is saved in the current directory.

7

5 Graphing

A common question on this is to add grid line, which is really easy: grid(col="darkgray") for example.

5.1 Customize Graphic Parameters

You can customize these parameters in each plot, you can also do so with par() function. By itself, it
displays all settings you can customize.

par()
opar = par()
par(col.lab="red") # red x and y labels
hist(mtcar$mpg)
par(opar) # restore original setting

Text and symbol size is controlled by:

cex overall text and symbol size, 1 is default
cex.axis magnification of axis annotation related to cex
cex.lab x,y label size related to cex
cex.main title size related to cex
cex.sub subtitle size related to cex

Plot symbol and line style

Plot symbol is controlled by pch= options, from 0 (square), 1 (circle), 2 (triangle), 3 (cross), all the way to
25. For line, line type is controlled by lty= option, from 1 (solid), 2 (dashed), 3 (dotted) etc; line width is
controlled by lwd=.

Colors controls include:

col default plotting color, may take vector of colors to recycle
col.axis color for axis annotation
col.lab color for x, y labels
col.main color for title
col.sub color for subtitles
fg plot foreground colors
bg plot for background colors

You can create a vector of n contiguous colors using function of rainbow(n), heat.colors(n), terrain.
colors(n), topo.colors(n), and cm.colors(n).

theta = 1:50
plot(theta,sin(theta), col=1:50, pch=16, cex=4)
plot(theta,cos(theta), col=colors()[51:100], pch=16, cex=4)
\end{Verbatm}

\rhead{Font family control (On Windows):}

\begin{Verbatim}
> plot(1:10)
> windowsFonts(A=windowsFont("Cambria"))
> text(5,8, family="A", "hello world")

Font style control:

8

font 1=plain,2=bold,3=italic,4=bold italic,5=symbol
font.axis font for axis annotation
font.lab font for x, y labels
font.main font for title
font.sub font for subtitles
ps font point size, text size = ps*cex
family font family for drawing text: serif, sans, mono, symbol

You can see what font is mapped to which family by run windowsFonts().

Margin and graph size

on windows
windows(height=4, width=6)

on unix
x11(height=4, width=6)

Margin is controlled by:

mar numerical vector indicating margin size
c(bottom, left, top, right) in lines
default = c(5,4,4,2) + 0.1

mai margin size in inches
pin plot dimension (width, height) in inches

5.2 Line Plot

plot(ge, ylab="Earnings per Share", main="General Electronics")

• type="o" - draw data point in circles

• col="blue" - draw line in color blue

• lty="dashed" - dashed line

• lowess() and supsmu() are scatterplot smoothers. They draw smooth curves that fit the relationship
between y and x.

Example

> data(cars)
> plot(speed˜dist,data=cars)
> with(cars,lines(supsmu(dist,speed),col="purple",lwd=2))
> with(cars,lines(lowess(dist,speed),col="tomato",lwd=2))
> legend(2,25, legend=c("lowess","supersmoother"),bty="n", lwd=4, col=c("tomato", "purple"))

5.3 Bar Plot

Grouped Bar Plot
counts <- table(mtcars$vs, mtcars$gear)
barplot(counts, main="Car Distribution by Gears and VS",

legend =c("d1","d 2"), col=c("gray","greenyellow"),
beside=TRUE, axis.lty=1,
names.arg=c("3 Gears", "4 Gears", "5 Gears"), cex.names=0.8)

axis.lty=1 is to make axis show up - in the default mode, this axis doesn’t get displayed.

9

● ●

● ●
●

●
● ● ●
● ●

● ● ● ●
● ●● ●
● ● ● ●

● ● ●
● ●
● ● ●

● ● ● ●
● ● ●

● ● ● ● ●

●
●

● ●● ●
●

0 20 40 60 80 100 120

5
10

15
20

25

dist

sp
ee

d
lowess
supersmoother
lowess
supersmoother

5.4 Ploting Two Data Series on One Figure

This is often achieved with hold commmand on Matlab, but a bit less intutive on R:

plot overlapping ones
assuming d2 and d3 are holding two data series
pdf(file="chester-compare.pdf", family="Times")
ymax = max(d2, d3)
ymin = min(d2, d3)
plot(d2, type="l", col="red", ylim=c(ymin, ymax), log="y",

main="Chester Stock Kernel vs. Low Noise Kernel (FWQ)",
xlab="Samples",
ylab="Cycle Counts (Log Scaled)")

lines(d3, type="l", col="blue")
legend(13000, ymax, c("2.2 Stock Kernel", "2.2 Low Noise Kernel"), cex=0.8,

fill = c("red", "blue"))

Noted that since we plot d3 later, the graphic lines from d3 will overwrite d2. This essentially give d3 a higher
visibility.

5.5 Export to PDF and PNG

To generate pdf, you can do:

10

3 Gears 4 Gears 5 Gears

d 1
d 2

Car Distribution by Gears and VS

0
2

4
6

8
10

12

pdf("data.pdf",height=4,width=6, family="Times")

dev.off() # must close

You can issue many pdf commands in between before you close the device file. The family option is quite
limited. What works for png doesn’t ncessarily work for pdf.

Here are convenient functions that are designed to generate both png and pdf in one shot:

openg <- function(width=3, height=3, pointsize=8)
{

windows(width=width, height=height, pointsize = pointsize)
}

above windows is 3x3 inch

saveg <- function (fn, width=3, height=3, pointsize=8)
{

dev.copy(device= pdf, file=paste(fn, ".pdf", sep=""),
width=width, height = height, pointsize=pointsize)

dev.off()

dev.copy(device= png, file=paste(fn, ".png", sep=""),
width=width, height = height, pointsize = pointsize)

dev.off()
}

save figure to both pdf and png format

11

save(’a-plot’)
save(’b-plot’, 5, 4, 11)

h <- function(x, xlab= ’’, ylab = ’density’, main = ’’, ...)
{

hist(x, xlab=xlab, main=’’, freq=FALSE, col = ’grey90’, ylab=ylab,
...)

}

6 Probability

6.1 Generate values from a distribution

binomial

> rbinom(10, size=1, p=0.5)
[1] 1 1 0 1 0 1 1 1 0 1

Poisson

rpois(20, 3)

Normal

rnorm(10)

Uniform

runif(n=20, min=0, max=1)

Exponential

rexp(n=10, rate=3)

12

